## Pooljuhtmaterjalide optiline spektroskoopia

Prof. Jüri Krustok

Kontakt: <u>krustok@staff.ttu.ee</u> WWW: **staff.ttu.ee/~krustok** 

# Pooljuhtmaterjalide optiline spektroskoopia

- Optiline neeldumine
- Fotoluminestsents
- Päikesepatareide spektraalkarakteristikud.

2

1

Raman spektroskoopia











































### Fotogeneratsioon

Fotogeneratsioonis genereeritakse võrdselt auke ja elektrone, kusjuures iga footon genereerib ühe elektron-augu paari. Siis võib kirjutada:

$$\frac{\partial n}{\partial t}|_{\text{valgusega}} = \frac{\partial p}{\partial t}|_{\text{valgusega}} = G_{\text{L}}(x,\lambda) = G_{\text{L}0}e^{-\alpha x}$$

kus  $G_{L0}$  fotogeneratsiooni kiirus [e-h paare / (cm<sup>3</sup> s)] kohas x = 0





































| Ühend                                     | Värvus        |
|-------------------------------------------|---------------|
| GaAs <sub>0.6</sub> P <sub>0.4</sub>      | PUNANE        |
| GaAs <sub>0.35</sub> P <sub>0.65</sub> :N | ORANZH-PUNANE |
| GaAs <sub>0.14</sub> P <sub>0.86</sub> :N | KOLLANE       |
| GaP:N                                     | ROHELINE      |
| GaP:Zn-O                                  | PUNANE        |
| AlGaAs                                    | PUNANE        |
| AllnGaP                                   | ORANDZH       |
| AllnGaP                                   | KOLLANE       |
| AllnGaP                                   | ROHELINE      |
| SiC                                       | SININE        |
| GaN                                       | SININE        |





















53 Doonor-aktseptorpaaride luminestsents (a) TYPE I عالله المراث المراجع المراجع TYPE IA BSERVE INT. ակատուլ, իրի կող է է իկ կի, է է և է կի կի է N NC (b) TYPE II DBSERVED INT. TYPE IIA 2,25 2.23 2 24 2,26 9 97 2.28 2 20 PHOTON ENERGY IN eV

GaP klassikaline töö: Phys. Rev. 133, 1964, p. A269

















| D    | D-D                   | A paari         | id erine      | evate ki        | ristallstr        | uktuuride korral        |
|------|-----------------------|-----------------|---------------|-----------------|-------------------|-------------------------|
| Pos  | sible di              | stances betwee  | en the two in | terstitial posi | tions (i1 or i2), | and the                 |
| Ag   | or In si              | tes, respective | y, in the cha | alcopyrite and  | d orthorhombic    | lattice of              |
| AgI  | InS <sub>2</sub> . St | arting from th  | e shortest on | e, the distance | es are labelled   | D1, D2,                 |
| etc. |                       |                 |               |                 |                   |                         |
|      |                       | Chalcopyrite    |               | Orthorhombic    |                   | AdlnS, halkonüriit ia   |
|      | No                    | Lattice sites   | Distance, Å   | Lattice sites   | Distance, Å       | ortorombiline struktuur |
|      | D1                    | Ag-i2,In-i2     | 2.49          | In-i2,Ag-i1     | 2.48              |                         |
|      | D2                    | Ag-i1,In-i1     | 2.8           | Ag-i1,In-i2     | 2.51              |                         |
|      | D3                    | Ag-i1,In-i1     | 2.91          | In-i1,Ag-i2     | 3.45              |                         |
|      | D4                    | Ag-i2,In-i2     | 4.68          | In-i1,Ag-i2     | 4.8               |                         |
|      | D5                    | Ag-i2,In-i2     | 4.81          | In-i1,Ag-i2     | 4.81              |                         |
|      | D6                    | Ag-i1,In-i1     | 4.98          | In-i1,Ag-i2     | 5.3               |                         |
|      | D7                    | In-i2           | 6.23          | In-i1,Ag-i2     | 6.26              |                         |
|      |                       |                 |               | 1               |                   |                         |
|      |                       |                 |               |                 |                   | 6                       |



























**Luminestsentsiriba kuju**  
Gaussi kuju: 
$$I(E) = I_0 \exp\left[-\frac{4\ln 2(E - E_{max})^2}{W^2}\right]$$
  
Kui Pekariaanis S ->  $\infty$ , siis muutub Pekariaan samuti Gaussiaaniks:  
 $I(E) = I_0 \exp\left[-\frac{4\ln 2(E - E_0 - S\hbar\omega)^2}{8\ln 2S(\hbar\omega)^2}\right]$ 



#### Tugevalt "legeeritud" materjalide luminestsents

- Suurem osa uuritavatest kolmikühenditest on nn. tugevalt legeeritud
- Tugev legeerimine: defektide vaheline kaugus on väiksem kui laengukandjate Bohri raadius.
- Juhtivus- ja valetstsooni ääri mõjutavad tugevalt potentsiaali fluktuatsioonid.















## Mittekiirguslik rekombinatsioon läbi defektide

- Paljudes materjalides võib rekombinatsioon minna ka läbi defektitasemete mittekiirguslikult.
- Mittekiirgusliku rekombinatsiooni osakaalu näitab kvantväljund.

87

Kustutustsentrid-> s-tsentrid





















99

Elastne (Rayleigh) hajumine  $I = I_o \frac{8\pi^4 N \alpha^2}{\lambda^4 R^2} (1 + \cos^2 \theta)$ Elastsel hajumisel sõltub hajumise intensiivsus pealelangeva valguse lainepikkusest  $\lambda$  ja ka hajumise nurgast  $\Theta$ Mida sinisem on valgus, seda paremini hajutab! Sinine taevas- päikesekiirguse Reyleigh hajumine õhu molekulide!! Udutuled peaks olema punasemad!













