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Drift

J Direction of motion

» Holes move in the direction of the electric field. (®26)
» Electrons move in the opposite direction of the electric field. (©2®)

» Motion is highly non-directional on a local scale, but has a net direction
on a macroscopic scale.

» Average net motion is described by the drift velocity, v, [cm/sec].

» Net motion of charged particles gives rise to a current.
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Direction of net moti%

Instantaneous velocity is extremely fast 3
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(d Drift of Carriers

£

N \/\ \ Velocity stays

Velocity keeps <
I constant

£ o 0 0% g 0 Sk
< (x‘\*ij-._\_/ \-\1\ L ? increasing
POV ‘
-

/o3 \\/

The ball rolling down the smooth hill speeds up
continuously, but the ball rolling down the stairs
moves with a constant average velocity.
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Electric Field

Drift of electron in a solid

Average drift velocity:

(V>Lfec.tmn =M

(V)lkofe =Hp E
4

u [em?/Vsec] : mobility
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d Schematic path of an electron in a semiconductor.
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Random thermal motion. Combined motion due to random thermal

motion and an applied electric field.



The motion of an electron in a solid under the influence of an applied field.

Energy-band representation of the motion, indicating the loss of energy
when the electron undergoes a collision.
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[ Conduction process in an n-type semiconductor

77J7_ n — type QT 774;:_ n — type —oV

Energy

Thermal equilibrium Under a biasing condition



Electric Field [V/cm]

4)

Current Density J
[A/cm?]

o+ Hole

. Motion
- Electron
Motion

Area A

Given current density J (/ = J x Area ) flowing in a semiconductor block
with face area 4 under the influence of electric field £, the component of J
due to drift of carriers is:

Jp Drtft=q.p.vd and Jn ant=q.n.vd

Hole Drift Current Density Electron Drift Current Density
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(J At Low Electric Field Values,
S ol g =4 P M, E and lpig =41 1, E

> u [em?/V-sec] is the “mobility” of the semiconductor and measures the
ease with which carriers can move through the crystal.

» The drift velocity increases with increasing applied electric field. More
generally, for Silicon and similar materials the drift velocity can be
empirically given as:

u,E when E—0
y = Hy g{
d = /8 =

v when E — «©

p
ll + ( “E ) ]
Y sat where v

sat

sat

is saturation velocity



Drift
O Drift velocity vs. Electric field
Designing devices to work here
results in faster operation
Vpeak /
2 2
:;-: [V
& ,&’? Z e*;‘?
g= g
A A
E [Viem] E [Viem]
S1 and similar materials GaAs and similar materials

» Ohm’s law is valid only in the low-field region where drift velocity is independent of the
applied electric field strength.

> Saturation velocity is approximately equal to the thermal velocity (107 cm/s). 10
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O Drift velocity vs. Electric field in Si.
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Electrons 77 K

M

Drift velocity (cm s7h
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» Dirift velocities of electrons (at 77 K and 300 K) and holes (at 300 K) in Silicon as functions
of the applied field, showing velocity saturation at high fields.

» The presence of several curves indicates the variation in reported data.
12



Drift

O Drift velocity vs. Electric field in Si and GadAs.

Carrier drift velocity (cm/s)
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O Mobility

> u [em?/Vsec] is the “mobility” of the semiconductor and measures the
ease with which carriers can move through the crystal.

" u ~ 1360 cm?/Vsec for Silicon @ 300K
= w,~ 460 cm’/Vsec for Silicon @ 300K
» u, ~ 8000 cm?/Vsec for GaAs @ 300K
= w,~ 400 cm’/Vsec for GaAs @ 300K

Average drift velocity:

U, , = q<* ) [cm2 v sec] Moioaron ==

m n,p MNyose = 4

» <t>is the average time between “particle” collisions in the
semiconductor.

» Collisions can occur with lattice atoms, charged dopant atoms, or
with other carriers. 14
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» Low-field mobility in Silicon as a function of temperature.

» The solid lines represent the theoretical predictions for pure lattice scatterings
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L Effect of Doping concentration on Mobility
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d

Effect of Doping concentration on Mobility
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» Electron and hole mobilities in Silicon as functions of the total

dopant concentration.
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L Effect of Temperature on Mobility

» Since the slowing moving carrier is likely
to be scattered more strongly by an
interaction with charged ion.

» Impurity scattering events cause a N /S
decrease in mobility with decreasing N,
temperature. /7 _ _ _
\( L —_ > A carrier moving through the lattice
encounters atoms which are out of their

K0y T %2 T =32 | normal lattice positions due to the
% § thermal vibrations.
‘ié’ » The frequency of such scattering

increases as temperature increases.

- \—

[.attice scattering

» At low temperature, thermal
motion of the carriers is slower,
and ionized impurity scattering

Impurity scattering

becomes dominant. < At low temp. lattice scattering is less important. |
[
As doping concentration increase, impurity T(K)
scattering increase, then mobility decrease. (log scale)

Temperature_dependence of mobility with both lattice and impurity scattering. 18



Drift

O Effect of Temperature on Mobility
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Resistivity and Conductivity

d Ohms’ Law

J=0"E _% [A/sz] Ohms Law

(o} [1/ 0hm-cm] Conductivity

Y [ohm . cm] Resistivity

20
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Resistivity and Conductivity

O Adding the Electron and Hole Drift Currents (at low electric fields)

J=J

p

Drift s Jn |Driﬁ = q(ﬂpp + ﬂnn) -E Drift Current
o= q(‘ul’p+ ‘unn) Conductivity
Resistivity

0= % =1/|q(u,n- u,p)]

» But since 1, and 1, change very little and » and p change several
orders of magnitude:

osqun forn-type with n>>p

os=qu,p for p-type with p>>n
21
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Current conduction

O Current conduction in a uniformly doped semiconductor bar with
length L and cross-sectional area A.

Area=A

22
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Resistivity and Conductivity

J Do not confuse !!!

*» Resistance and Resistivity
% Conductance and Conductivity

/VE

» Resistance to current flow along length L.

-LTohm:cm -
rR=" y [0 mc;n: cm]=[ohm] Resistance

23



Resistivity and Conductivity

d Schematic lllustration of Sheet Resistance

Elcctric field
Current y :
Holé motion / Electron motion

Drift of electrons and holes in a setriconductor bar,

R
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Ry sheet resistance (€M)
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Doping concentration (cm-3)

Resistivity

102]
Solid line—Resistivity to dopant density
N Dashed line—Extrapolation
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Resistivity (€2-cm)

» Dopant density versus resistivity
at 296 K for silicon doped with
phosphorus and with boron.

The curves can be used with little error to
represent conditions at 300 K.

[W. R. Thurber, R. L. Mattis, and Y. M. Liu, National Bureau of
Standards Special Publication 400-64, 42 (May 1981).]
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Resistivity

O Resistivity vs. Impurity concentration for Si and GaAs
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O Measurement of resistivity using a Four-point probe.

27
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Hall effect

L Basic setup to measure carrier concentration using the Hall effect.

/
BZ
hx
y
+ o
VH
— * €& —— o—
% €
+ 0'4\/)( l y
Area A
DU
i —
V

28



" A
Drift velocity, Resistivity, and Conductivity

Average drift velocity:

(V>Lfec.tmn =t E
<v)|kofe - ﬂpE
Electric current density:
J= —qn(v)L +gp (V)lp
=g(tn+ 4,0 )E=0E

Electric Conductivity:

o =gl tn+ H,p)

29



Diffusion

O Nature attempts to reduce concentration gradients to zero.
Example: a bad odor in a room, a drop of ink in a cup of water.

» In semiconductors, this “flow of carriers” from one region of higher
concentration to lower concentration results in a “Diffusion Current”.

g,
Diffuse
-— @ ® ©
@ ® 6 0 0 0
@ e 00l |lenool] .

Visualization of electron and hole diffusion on a macroscopic scale.

Diffusion Jn |Diffusion»

@]

30
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d Fick’ s law

» Diffusion as the flux, F, (of particles in our case) is proportional to
the gradient in concentration.

n : Concentration

D : Diffusion Coefficient

F=-DVn

» For electrons and holes, the diffusion current density
( Flux of particles times = ¢ )

=-q-D,Vp
q:D Vn

P ‘Diﬁusion

J

Diffusion

The opposite sign for electrons and holes 31



Diffusion
 Electron diffusion current
Current -
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» Electron concentration vs. distance; [/ is the mean free path.

» The directions of electron and current flows are indicated by arrows. 32
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Total Current

d Total Current = Drift Current + Diffusion Current

J,=J

p

J, =,

Diffusion =q-,uppE—q-Dpr
nkE+q-DVn

Drift + P

Drift T Jn|Diﬁ‘uSion =q- ﬂn

J=J, +J,

33
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Einstein relation: drift and diffusion

(i.e. relation between mobility u and diffusion coefficient D )
Total current in semiconductor (1D Case, n-type):

et

drift diffusion

Diffusion coefficient— depends on carrier scattering

The mobility also depends on carrier scattering! It means that both p
and D must be related somehow!

34
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Einstein relation: drift and diffusion

We know that the diffusion coefficient D is:

n = Vin I m* (carrier mobility)
n

35



Einstein relation: drift and diffusion

Kinetic energy of carriers for 1 degree of freedom due to thermal
movement is 7z kT , so we will have:

| ]
—m v, =—kT =
2 2

D = V2 Y,m, - KT Y,m,
n th o *
e m, e

same for holes:

D/z - (k_T)Aun

Einstein relation

36




