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How do Electrons and Holes Populate the Bands? 
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The number of conduction band 
states/cm3 lying in the energy 
range between E and E + dE  
(if E ≥ Ec). 

The number of valence band 
states/cm3 lying in the energy 
range between E and E + dE  
(if E ≤ Ev). 
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q  Density of States Concept 

General energy dependence of  
gc (E) and  gv (E) near the band edges. 



How do Electrons and Holes Populate the Bands? 

q  Density of States Concept 

Quantum Mechanics tells us that the number of available states 
in a cm3 per unit of energy, the density of states, is given by: 

Density of States  
in Conduction Band 

Density of States  
in Valence Band 



How do electrons and holes populate the bands? 

q  Probability of Occupation (Fermi Function) Concept 

Ø Now that we know the number of available states at each energy,       
then how do the electrons occupy these states? 

Ø We need to know how the electrons are “distributed in energy”. 
Ø  Again, Quantum Mechanics tells us that the electrons follow the        

“Fermi-distribution function”. 

Ef  ≡ Fermi energy (average energy in the 
crystal) 
k  ≡ Boltzmann constant (k=8.617×10-5eV/K) 
T  ≡Temperature in Kelvin (K) 

v  f(E)    is the probability that a state at energy E is occupied. 
v  1-f(E) is the probability that a state at energy E is unoccupied. 
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Ø  Fermi function applies only under equilibrium conditions, however, is 
universal in the sense that it applies with all materials-insulators, 
semiconductors, and metals. 



q   Fermi-Dirac Distribution 

How do electrons and holes populate the bands? 

Ef 



How do electrons and holes populate the bands? 

q  Probability of Occupation (Fermi function) Concept 

v  At T=0K, occupancy is “digital”:  No occupation of states above Ef and 
  complete occupation of states below Ef . 

v  At T>0K, occupation probability is reduced with increasing energy. 
  f(E=Ef ) = 1/2 regardless of temperature. 

 
v  At higher temperatures, higher energy states can be occupied, leaving 

more lower energy states unoccupied [1 - f(Ef )]. 
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How do electrons and holes populate the bands? 

q  Probability of Occupation (Fermi function) Concept 

Ø  If E ≥ Ef +3kT Ú 
Ø Consequently, above Ef +3kT the Fermi function or filled-state probability 

decays exponentially to zero with increasing energy. 
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The density of electrons (or holes) occupying the states in 
energy between E and E + dE is: 

How do electrons and holes populate the bands? 

q  Probability of Occupation Concept 

0                      Otherwise  

dEEfEgc )()(
Electrons/cm3 in the conduction 
band between E and E + dE  
(if E ≥ Ec). 

Holes/cm3 in the conduction band 
between E and E + dE  
(if E ≤ Ev). 
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How do electrons and holes populate the bands? 

q  Probability of Occupation Concept 



q Typical band structures of Semiconductor 
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Metals vs. Semiconductors 

Ef 

Ef 

q  Allowed electronic-energy states g(E) 

Metal Semiconductor 

The Fermi level Ef is at an intermediate energy 
between that of the conduction band edge and 
that of the valence band edge. 

Fermi level Ef immersed in the 
continuum of allowed states. 



Ø Note that although the Fermi function has a finite value in the 
gap, there is no electron population at those energies.        
(that's what you mean by a gap) 

Ø  The population depends upon the product of the Fermi function 
and the electron density of states. So in the gap there are no 
electrons because the density of states is zero. 

Ø  In the conduction band at 0K, there are no electrons even 
though there are plenty of available states, but the Fermi 
function is zero. 

Ø  At high temperatures, both the density of states and the Fermi 
function have finite values in the conduction band, so there is a 
finite conducting population. 

q   Fermi function and Carrier Concentration 

How do electrons and holes populate the bands? 



How do electrons and holes populate the bands? 

q  Energy Band Occupation in p-type semiconductor 



How do electrons and holes populate the bands? 

q  Energy Band Occupation in n-type semiconductor 



How do electrons and holes populate the bands? 

q  n-type material 



How do electrons and holes populate the bands? 

q  p-type material 



C B 

g ( E ) 

E 

Impurities 
forming 

bands 

E F p 
E v 

E c 
E F n 

E v 

E c 

C B 

V B 

Degenerated n-type semiconductor 
Large number of donors form a band 
that overlaps the CB 

Degenerated p-type 
semiconductor 

How do electrons and holes populate the bands? 

q  Heavily Doped Dopant States 
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Intrinsic semiconductor	

Here we can have a position of Fermi level in intrinsic SC: 

So, it is almost in the middle of the bandgap 



Extrinsic Semiconductors 
 
 

 * Charge-neutrality equation 
 

  ⇒ Evaluation of carrier concentrations 
 

 * Fermi-level variation in extrinsic semiconductors 
 

  ⇒ Doping dependence 
 

 * Impurity statistics 



Charge-Neutrality Equation 
•  Previously we discussed how we may improve the electrical properties of semiconductors 
by the deliberate addition of impurities known as DOPANTS 
 

 * The doped semiconductor is referred to as EXTRINSIC since at room temperature its 
    electrical characteristics are determined by the concentration of DOPANTS rather than 
    the intrinsic carrier concentration ni 

 
  ⇒ Doping with DONORS increases the ELECTRON concentration and the resulting  
   semiconductor is said to be n-TYPE while doping with ACCEPTORS increases  
   the HOLE concentration and the resulting semiconductor is said to be p-TYPE 

REPLACING A SILICON ATOM WITH ARSENIC 
YIELDS AN EXTRA ELECTRON 

e- 

As B 

e+ 

REPLACING A SILICON ATOM WITH BORON 
YIELDS AN EXTRA HOLE 



Charge-Neutrality Equation 
•  The carrier concentrations in extrinsic semiconductors may be determined by introducing 
a CHARGE-NEUTRALITY equation which expresses the fact that the crystal as a whole must 
remain CHARGE NEUTRAL 
 
 
 
 

 * In this expression ND
+ and NA

- are the concentrations of IONIZED donors and acceptors 
     
  ⇒ When an electron is liberated from a donor it is left with an equal POSITIVE  
   charge while liberation of a hole from an acceptor leaves it NEGATIVELY charge 

 
 * Another important equation that will be used to determine the carrier concentrations in  
    the extrinsic semiconductor is  

 
 
 
 
 

  ⇒ Since the RHS of this equation is INDEPENDENT of the doping the PRODUCT of  
   the electron and hole concentrations in a non-degenerate semiconductor is  
   similarly INDEPENDENT of the doping concentration 

p−n+ND
+ −NA

− = 0

np = 4 2πkBT
h2

⎡

⎣⎢
⎤

⎦⎥

3

(me
*mh

* )3/2 exp −
Eg

kBT
⎡

⎣
⎢

⎤

⎦
⎥



Fermi-Level Variation in Extrinsic Semiconductors 
•  In doped semiconductors:  
 
 
 
 
 
 
 

  
 * By REARRANGING these equations we obtain expressions 

relating the Fermi level to electron and hole concentrations in 
doped semiconductors: 

p = ni exp[(Ei −EF ) / kBT ]

n = ni exp[(EF −Ei ) / kBT ]
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Fermi-Level Variation in Extrinsic Semiconductors 
•  For HEAVY doping and FULL ionization of dopants the position of the 
Fermi energy in the gap varies as 

EF −Ei = − kBT ln
NA
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•  SCHEMATIC ILLUSTRATION INDICATING THE FERMI LEVEL 
VARIATION IN A SEMICONDUCTOR WITH n- AND p-TYPE DOPING 
 
•  THE DOPING RANGE ILLUSTRATED HERE CORRESPONDS 
TO THE REGIME OF HEAVY DOPING WHERE THE DOPANT 
DENSITIES SIGNIFICANTLY EXCEED ni 
 
•  NOTE THAT FOR SUFFICIENTLY HIGH DOPING DENSITIES THE 
FERMI LEVEL MOVES CLOSE TO EITHER BAND EDGE SO THAT 
THE SEMICONDUCTOR BECOMES DEGENERATE 
 
•  THE TERM “DEGENERATE” IS THEREFORE OFTEN USED TO 
INDICATE A VERY-HEAVILY DOPED SEMICONDUCTOR 



Impurity Statistics 
•  At HIGH temperatures Nc >> ND and  
 
 
 

 * In this case the Fermi energy will lie well BELOW the donor energy as ALL 
the donors are ionized and the density is therefore relatively CONSTANT 
* The variation of the electron density with temperature in a typical n-type  

    semiconductor is shown schematically in the figure below 

n = ND

•  VARIATION OF THE ELECTRON DENSITY WITH TEMPERATURE IN 
A TYPICAL n-TYPE SEMICONDUCTOR 
 
•  THE REGION WHERE THE DENSITY IS INDEPENDENT OF 
TEMPERATURE IS KNOWN AS THE EXHAUSTION REGION 
 
•  AT LOWER TEMPERATURES THE DONORS BEGIN TO FREEZE-OUT 
CAUSING A REDUCTION OF THE ELECTRON CONCENTRATION 
 
•  THIS LOW-TEMPERATURE REGION IS OFTEN REFERRED TO AS THE 
RESERVE REGION 
 
•  AT HIGHER TEMPERATURES THAN WE HAVE CONSIDERED HERE 
WE MAY NO LONGER NEGLECT THE HOLE CONCENTRATION AND THE 
SEMICONDUCTOR REVERTS TO INTRINSIC-LIKE BEHAVIOR WHERE 
CARRIERS FROM THE BULK CRYSTAL SWAMP ELECTRONS PROVIDED 
BY THE DONORS  
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